

Background

- Simple Program
- Multi-purpose
- Volumetrically constrained to existing conditions
- Interconnected patio spaced between two "Clean buildings"
- Heavy focus on functionality

Main Structural System

- Rigid diaphragm system in accordance european building code standards.
- HEB Steel Flange Beams compose the gymnasium
- Cast in place concrete compiles the rigid frame of the office area.
- Precast Concrete Fiberglass panels installed as shear components on both diaphragms.

Overall Plan

Ground Floor Plan

Gym composes more than half of the projected building footprint.

Egress and "Offices"

- Offices, fitness rooms, and pool.
- Reinforced Concrete Framing
- Glazing, shear walls, column system
- Cast in place columns
- 524.88 Meters Sq * (5 Stories) (5,649 Ft Sq)
 - Length 10.28 Meters (192.25 feet)
 - o Width 47.6 Meters (125 feet)
 - Height 10.28 Meters (39.20 feet)

Gymnasium Foundation

- Isolation footings
- Shear wall footings
- 600mm
 exterior
 wall
 fiberglass
 concrete
 walls.

Office Foundation

- Consistent material usage from 5th floor to foundation plan.
- Isolated footings, and wall cast columns integral to project serviceability.

Visual Analysis

• Steel Framing vs. reinforced concrete diaphragm structures.

Connection Points

- Pin-connection points
- HEB double chord truss system.
- Rigid framing system
- Foundation connection via baseplates.
- Welded/Bolted Connections

Loading Diagram: Concrete

- Entire office portion : reinforced concrete systems
- Bear uniformly distributed flooring and roof systems.
- Columns vary in size: (30x35 / 60x90)
- Beams vary in size: typical beams (25x60) / deep beams (40x240)

Shear Diagram: Concrete

 Shear loading results for a typical uniformly distributed beam.

Moment Diagram: Concrete

 Bending moment follows suite, with grid spacing, and load placements.

Deflection Diagram: Concrete

 Exterior and interior shear, and stability components utilized to reinforce entire office portion superstructure.

Axial Reaction Diagram: Concrete

Framing System Long Sides

- HEB 300 Beams and Girders compose primary framing system
- Diagonal and Lateral Bracing cantilevered, HEB 180 Beams
- Pinned System

Framing System Short Sides

- HEB 180 Truss systems projected across roofing system.
- Diaphragm system is HEB 300 Beams and Girders.
- End Conditions, use HEB 180, and HEB 300s

Loading Diagram: Truss

 Uniformly distributed load roof system, applied across entire roof, and distributed to both shear wall systems.

Shear Diagram: Truss

• HEB 180 webbing between double chords composed of HEB 300 spatial truss system.

Moment Diagram: Truss

• Bending possibly reduced with pretension stressing, and braced systems.

Deflection Diagram: Truss

• Left side wall projects straight to concrete floor column base plates, while right side component, projects forces into reinforced concrete framing system.

Axial Diagram: Truss

9 Spatial truss systems are braced bi-laterally.

Load Tracing System

• Exterior members are primary point of transfer from roof loading to foundation

Foundation

Foundation

Location Impacts

- NCSE-02, peak ground acceleration provided via the g chart, with higher values being at a higher risk.
- Winds procured from the west and southwest direction. And could create possibly vortex shedding

SPANISH BUILDING CODE HAZARD MAP NCSE-02

Summary

- General background information regarding site context
 - Wind patterns
 - Seismic hazard overview
- Components of the structural system
- Floor plan
 - o location of structural components
 - Orientation and distribution of of the space in relation to structural components
 - Foundation
- Visual Analysis
 - Material factor
 - o Load
 - Loading factor
 - Truss system analysis
- Framing system
- Load Tracing diagrams

- General background information regarding site context
 - Wind patterns
 - Seismic hazard overview
- Components of the structural system
- Floor plan
 - location of structural components
 - Orientation and distribution of of the space in relation to structural components
 - Foundation
- Visual Analysis
 - Material factor
 - Loading factor
 - Truss system analysis
- Framing system
- Load Tracing diagrams

Summary

- General background information regarding site context
 - Wind patterns
 - Seismic hazard overview
- Components of the structural system
- Floor plan
 - o location of structural components
 - Orientation and distribution of of the space in relation to structural components
 - Foundation
- Visual Analysis
 - Material factor
 - Loading factor
 - Truss system analysis
- Framing system
- Load Tracing diagrams

Axial Reaction Diagram: Concrete

- https://www.flickr.com/photos/campobaeza/34042352774 = Background Photo
- https://www.google.com/maps/place/Francisco+de+Vitoria+University+-+Madrid/@40.4403665,-3.8368576,766m/data=!3m2!1e3!4b1!4m5!3m4!1s0xd4185d02f8a6fe5:0x703d6f7e39d3e3aa!8
- <u>m2!3d40.4403665!4d-3.8346689</u> Google Maps References
- https://archello.com/brand/andres-rubio-moran Background Photo Slide 3 (Truss placement))
- https://p-upload.facebook.com/deportesUFV/?ref=page_internal Interior photo video pull
- https://www.campobaeza.com/sports-pavilion-university/ All remaining photos, documents, and diagrams
- https://www.archdaily.com/875503/multi-sport-pavilion-and-classroom-complex-alberto-campobaeza - Research Pool
- Earthquake Code Permanent Commission of Spain (2002) Norma de Construccio n Sismorresistente: Parte General y Edificacio n, NCSE-02. Ministry of Public Works of Spain, Madrid in SpanishMezcua, J., Rueda, J. & García Blanco, R.M. Nat Hazards (2011) 59: 1087. https://doi.org/10.1007/s11069-011-9819-3 - Earthquake information
- https://www.windfinder.com/forecast/madrid Wind loading information